
Uncovering Magic with Magic: Schedule Reconstruction
from High-Performance Kernel Libraries

Hongzheng Chen∗
Cornell University

Ithaca, New York, USA
hzchen@cs.cornell.edu

1 Introduction
To fully harness the power of hardware accelerators, high-performance
kernels are essential for various application domains in deep learn-
ing and scientific computing. Many of these kernels are carefully
crafted and optimized by hand using languages like C/C++, demand-
ing significant engineering efforts. Recent developments in kernel
libraries have embraced schedule languages [1–4] that decouple
program optimization (i.e., schedule) from algorithm specification.
Users only need to write a few lines of schedule code to trans-
form a basic program into an optimized one. However, this shift
merely transfers the coding burden from writing optimized kernels
to writing efficient schedules. While autoschedulers help generate
optimized programs automatically, users have little control over
the optimizations and their granularity remains opaque.

To tackle this challenge, we introduce a novel research problem:
schedule reconstruction, that is, reconstructing the schedule prim-
itives from an optimized kernel implementation. Unlike existing
approaches that focus on generating optimized kernels, our goal is
to reveal the optimizations within these kernels by generating step-
by-step schedule primitives. By providing an algorithm specification
and an optimized kernel implementation, we propose a two-stage
program synthesis technique to automatically generate the neces-
sary schedule for this transformation. While this paper represents
an initial exploration of schedule synthesis, our work demonstrates
the potential of this idea to: (1) Aiding programmers in compre-
hending the intricacies of high-performance program optimizations,
making it easier to debug and allowing them to experiment with
different tradeoff combinations. (2) Potentially providing templates
for automating compilers to generate even more high-performance
code than manually optimized ones.

2 Background and Related Works
Several domain-specific languages (DSLs) have emerged to de-

couple program optimizations from algorithm definition, offering
users a set of schedule primitives for efficiently conducting com-
plex program transformations. Halide [1] pioneered the concept of
algorithm and optimization decoupling in the domain of image pro-
cessing. TVM [2] subsequently extended this approach to support
deep learning applications, enabling the description of CPU and
GPU optimizations using a schedule language. HeteroCL [3] and
Exo [4] further developed and applied this idea to hardware acceler-
ators. In Fig. 1(a), we provide an example of a general matrix-matrix
multiplication (GEMM) kernel written in a schedule language. This
programming style is common in those scheduling languages[1–3],
denoted as dsl. Users start by providing an algorithm specification
∗This paper was presented at the PLDI’24 Student Research Competition (SRC) and
earned third place in the final round.

1 # Algorithm specification
2 import dsl
3 M, N, K = 1024, 1024, 1024
4 k = dsl.reduce_axis((0, K), "k")
5 A = dsl.placeholder((M, K), name="A")
6 B = dsl.placeholder((K, N), name="B")
7 C = dsl.compute((M, N), lambda i, j:
8 dsl.sum(A[i, k] * B[k, j], axis=k),
9 name="C") # S1
10
11 # Schedule construction

12 s = dsl.create_schedule(C)

13 s.<primitive>(<arguments>)

1 void gemm(float A[M][K], float B[K][N],
2 float C[M][N]) {
3 #pragma HLS partition variable=A dim=1
4 #pragma HLS partition variable=B dim=0
5 for (int v0 = 0; v0 < 16; v0 += 1) {
6 for (int v1 = 0; v1 < 64; v1 += 1) {
7 for (...) {
8 #pragma HLS pipeline II=1
9 float v18 = A[v0 * 64 + v1][v2];
10 float v19 = ...
11 // ...
12 // more computation
13 }}}}

Figure 1: (a) Left: An example GEMM kernel described in a
schedule language. (b) Right: An optimizedGEMM implemen-
tation in high-level synthesis (HLS) targeting accelerators.

Table 1: A partial list of the schedule primitives supported by
commonly used schedule languages like TVM and HeteroCL.

Primitive Description
s.split(i,v) Split loop i into a two-level nested loop with v

as the bound of the inner loop.
s.reorder(*l) Switch the order of sub-loops l.
s.unroll(i,v) Unroll loop i by factor v.
s.parallel(i) Schedule loop i in parallel.
s.pipeline(i,v) Schedule loop i in a pipeline manner with a

target initiation interval v.
s.partition(A,d,v) Cyclic/Block partition dimension d of array A

with a factor v.

(Lines 3-9) to describe what is the computation. Then, they can
create a schedule and apply primitives (Lines 12-13) to specify how
the computation should be executed. Table 1 lists some commonly
used primitives supported by TVM and HeteroCL.

In this project, we consider schedule reconstruction. Given the
algorithm specification of the kernel (Lines 1-9 in Fig. 1(a)) and
an optimized kernel implementation (Fig. 1(b)), our goal is to re-
construct the schedule (Lines 12-13) that can transform the vanilla
program defined in the specification to the optimized one. The
optimized code here is for demonstration purposes, showing that
achieving high performance in a kernel may require significant
code restructuring and pragma insertion.

The closest related work of this paper is Dexter [5], which lever-
ages program synthesis to automatically translate image processing
libraries to Halide. However, it only recovers the algorithm defini-
tion but not the schedule, making it again a black-box optimization
approach.

3 Methodology
Fig. 2 provides an overview of the synthesis process. We first parse
both the DSL and the target C++ program into an intermediate

1

https://pldi24.sigplan.org/track/pldi-2024-src

Hongzheng Chen

1 # Example sch. reconstr.
2 # Stage I:
3 # Template generation
4 s.split(??, ??)

5 s.split(??, ??)

6 s.reorder(??)

7 s.pipeline(??)
8
9 # Stage II:
10 # Schedule proposal
11 io, ii = s.split("i", 32)
12 jo, ji = s.split("j", 16)
13 s.reorder(jo,io,ji,ii,k)
14 s.pipeline(k)

Parser

Opt. Kernel (C++)

Analyzer

Stage I: Template generation

Stage II: Schedule proposal

Verifier

Schedule Sequence

Alg. Spec. (DSL)

Program
Analysis

Schedule
Reconstr.

Figure 2: Overview of the schedule reconstruction process.

representation (IR) and perform static analysis to extract essen-
tial information, such as variable names and loop bounds. With
this information, we employ a two-stage synthesis technique to
reconstruct the schedule sequence. First, we generate a schedule
template containing the primitives that will be invoked but without
the arguments. Then, we search through the loop variables and
factors to complete the template. Once a schedule is generated, we
utilize a verifier [6] to ensure the schedule can indeed produce the
target optimized program. If verification fails, the synthesizer is
notified and proposes new schedules iteratively.

(1) Program Analysis. We first analyze the source program
to extract necessary information for schedule synthesis. As these
DSLs typically describe nested loops, we leverage Presburger rep-
resentation [7] in polyhedral analysis [8] to represent loop-based
programs. Specifically, we represent the memory access pattern as:

𝑆 (i) → Array(𝑓0 (i), . . . , 𝑓𝑁 (i)) , i = (𝑖0, . . . , 𝑖𝑁) , (1)

where i is the vector of loop variables of 𝑁 nested loops, and 𝑓(·) is
the function mapping from loop variables to memory access indices.
For example, for the GEMM program in Fig. 1(a), we can explicitly
represent the memory access of arrays 𝐴 and 𝐶 as follows, with
each mapping the loop indices to the actual memory access indices:

𝑅𝑆1,𝐴 (𝑖, 𝑗) = {𝑆1(𝑖, 𝑗, 𝑘) → 𝐴(𝑖, 𝑘) : 0 ≤ 𝑖, 𝑗, 𝑘 < 1024}
𝑊𝑆1,𝐶 (𝑖, 𝑗) = {𝑆1(𝑖, 𝑗, 𝑘) → 𝐶 (𝑖, 𝑗) : 0 ≤ 𝑖, 𝑗, 𝑘 < 1024}

where 𝑅 and𝑊 denote different read and write accesses. The sub-
script indicates the compute statement (e.g., S1 – Line 7 in Fig. 1(a)).
𝑆1(𝑖, 𝑗, 𝑘) → 𝐴(𝑖, 𝑘) basically means the loop indices 𝑖, 𝑗, 𝑘 are
mapped to access the location of (𝑖, 𝑘) of array 𝐴.

(2) Schedule Reconstruction. To make the reconstruction pro-
cess scalable, we decompose the synthesis problem into two stages.

Stage I: Template generation.We first identify which primi-
tives will be used in the schedule. We classify the primitives into
two categories based on whether they require changing the pro-
gram structure, as shown in Table 2. The first three primitives need
to modify the program structure, requiring an explicit search pro-
cess to determine their arguments. By carefully examining these
transformations, we observe patterns that can aid our synthesis.
For instance, the .reorder() primitive maintains the same num-
ber of iteration variables in the transformed program, while the
.split() primitive increases the number of iteration variables by
one. Therefore, we can determine the number of these primitives in
the schedule. The latter three primitives only require annotations
and can thus be handled at the end of the synthesis process. Based

Table 2: Schedule primitives in Presburger representation.

Primitives Requiring Program Structure Modification

.split(𝑡,𝑐)
𝑆 (𝑖0, . . . , 𝑖𝑡𝑖 , 𝑖𝑡𝑜 . . . 𝑖𝑁) → 𝐴(𝑓0 (i′), . . . , 𝑓𝑁 (i′))

i′ = (𝑖0, . . . , 𝑖𝑡𝑖 + 𝑖𝑡𝑜 · 𝑐, . . . , 𝑖𝑁)

.reorder(𝜎)
𝑆 (𝑖𝜎 (0) , . . . , 𝑖𝜎 (𝑁)) → 𝐴(𝑓𝜎 (0) (i), . . . , 𝑓𝜎 (𝑁) (i))

𝜎 is the permutation function

.unroll(𝑡,𝑐)
𝑆 (𝑖0, . . . , 𝑖𝑡 ′ . . . 𝑖𝑁) → 𝐴(𝑓0 (i′), . . . , 𝑓𝑁 (i′))

i′ = (𝑖0, . . . , 𝑖𝑡 ′ mod 𝑐, . . . , 𝑖𝑁)
Primitives Only Annotating Operators

.parallel(i) Annotation

.pipeline(i) Annotation
.partition(A,d,v) Annotation

on these observations, we create a template schedule program that
consists of a sequence of primitives with holes to be filled, as shown
in the left of Fig. 2. By leveraging domain knowledge and generat-
ing a template, we can greatly reduce the search space and simplify
the synthesis process.

Stage II: Schedule proposal. The next step is to fill in the
holes in the template. We establish an equivalent relation between
all the memory access patterns generated by the schedule and
the target memory access patterns, leveraging the z3 solver [9]
to propose a new solution that satisfies these constraints. Since
we only ensure the access patterns match and cannot guarantee
that the computation is identical, we employ the verifier [6], which
formally verifies the equivalence of two C++ programs, to further
verify the schedule is valid. The process is iterative, where each
iteration proposes new schedules, applies transformations, and
verifies program equivalence until a valid schedule is found.

4 Evaluation
To assess the effectiveness of our proposed synthesizer across di-
verse programs, we conduct experiments using PolyBench [10], a
widely-used benchmark containing multiple kernels from scientific
applications. We leverage kernels generated by ScaleHLS [11] as
the inputs, which are highly optimized kernels for FPGA acceler-
ators. Our approach utilizes HeteroCL [3] as the frontend DSL to
reconstruct the schedules, but the methodology is applicable to
other schedule languages such as TVM [2] and Exo [4].

Experimental results are shown in Fig. 3. Across all the 13 bench-
marks, our synthesizer consistently and successfully produced
schedule sequences, demonstrating its effectiveness in handling
various application programs. Furthermore, the synthesis process
for all benchmarks was completed in seconds, highlighting the
practicality and efficiency of our approach.

Table 3: Synthesis results on PolyBench.

Benchmark # of Synthesized
Primitives Benchmark # of Synthesized

Primitives
2mm 9 jacobi-2d 8
3mm 15 mvt 6
atax 6 symm 8
bicg 7 syr2k 10

correlation 5 syrk 9
gemm 3 trmm 10

gesummv 2

2

Uncovering Magic with Magic: Schedule Reconstruction
from High-Performance Kernel Libraries

5 Conclusion and Limitations
In this project, we introduce a synthesizer designed to reconstruct
the schedule primitives for an optimized kernel, thereby unveiling
the black box of program optimizations and enabling programmers
to understand the optimization process.

However, several limitations exist. (1) Our current approach
only considers compute and annotation-only primitives. To achieve
high performance on CPUs and GPUs, programmers often need
to create multi-level caches in the program, requiring support for
memory customizations (e.g., bufferization). (2) Our synthesizer
currently only supports finely-structured program pairs. Expanding
its capabilities to handle more general program structures, such
as hierarchical programs with function calls, would significantly
enhance its utility and generality.

References
[1] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. Halide: A language and compiler for opti-
mizing parallelism, locality, and recomputation in image processing pipelines.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’13), 2013.

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan
Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and
Arvind Krishnamurthy. Tvm: An automated end-to-end optimizing compiler
for deep learning. In Proceedings of the 13th USENIX Conference on Operating
Systems Design and Implementation, 2018.

[3] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason
Cong, and Zhiru Zhang. Heterocl: A multi-paradigm programming infrastruc-
ture for software-defined reconfigurable computing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2019.

[4] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan Genc, and Jonathan
Ragan-Kelley. Exocompilation for productive programming of hardware accel-
erators. In Proceedings of the 43rd ACM SIGPLAN International Conference on
Programming Language Design and Implementation, 2022.

[5] Maaz Bin Safeer Ahmad, Jonathan Ragan-Kelley, Alvin Cheung, and Shoaib
Kamil. Automatically translating image processing libraries to halide. ACM
Trans. Graph., 38(6), nov 2019.

[6] Louis-Noël Pouchet, Emily Tucker, Niansong Zhang, Hongzheng Chen, Debjit
Pal, Gabriel Rodríguez, and Zhiru Zhang. Formal verification of source-to-source
transformations for hls. In The 2024 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), 2024.

[7] Sven Verdoolaege. Presburger formulas and polyhedral compilation. Polly Labs
and KU Leuven, 2016.

[8] Polyhedral Compilation. Polyhedral compilation. http://polyhedral.info/, 2023.
[9] LeonardoDeMoura andNikolaj Bjørner. Z3: an efficient smt solver. In Proceedings

of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, TACAS’08/ETAPS’08,
page 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

[10] Louis-Noël Pouchet. Polybench/c: The polyhedral benchmark suite. https:
//web.cs.ucla.edu/~pouchet/software/polybench/, 2023.

[11] Hanchen Ye, HyeGang Jun, Hyunmin Jeong, Stephen Neuendorffer, and Deming
Chen. Scalehls: a scalable high-level synthesis framework with multi-level
transformations and optimizations: invited. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, DAC ’22, page 1355–1358, New York, NY, USA,
2022. Association for Computing Machinery.

3

http://polyhedral.info/
https://web.cs.ucla.edu/~pouchet/software/polybench/
https://web.cs.ucla.edu/~pouchet/software/polybench/

	1 Introduction
	2 Background and Related Works
	3 Methodology
	4 Evaluation
	5 Conclusion and Limitations
	References

